Machine Learning and Big Data

Machine Learning and Big Data
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 9781119654742
ISBN-13 : 1119654742
Rating : 4/5 (42 Downloads)

Book Synopsis Machine Learning and Big Data by : Uma N. Dulhare

Download or read book Machine Learning and Big Data written by Uma N. Dulhare and published by John Wiley & Sons. This book was released on 2020-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.


Machine Learning and Big Data Related Books

Machine Learning and Big Data
Language: en
Pages: 544
Authors: Uma N. Dulhare
Categories: Computers
Type: BOOK - Published: 2020-09-01 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including thos
Big Data, Machine Learning, and Applications
Language: en
Pages: 103
Authors: Ripon Patgiri
Categories: Computers
Type: BOOK - Published: 2020-11-28 - Publisher: Springer

DOWNLOAD EBOOK

This book constitutes refereed proceedings of the First International First International Conference on Big Data, Machine Learning, and Applications, BigDML 201
Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
Language: en
Pages: 648
Authors: Aboul Ella Hassanien
Categories: Computers
Type: BOOK - Published: 2020-12-14 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes includin
Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Language: en
Pages: 346
Authors: Subhendu Kumar Pani
Categories: Technology & Engineering
Type: BOOK - Published: 2022-09-01 - Publisher: CRC Press

DOWNLOAD EBOOK

Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine tim
Blockchain, Big Data and Machine Learning
Language: en
Pages: 360
Authors: Neeraj Kumar
Categories: Computers
Type: BOOK - Published: 2020-09-24 - Publisher: CRC Press

DOWNLOAD EBOOK

Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in real