Toroidal Dehn Fillings on Hyperbolic 3-Manifolds

Toroidal Dehn Fillings on Hyperbolic 3-Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 154
Release :
ISBN-10 : 9780821841679
ISBN-13 : 082184167X
Rating : 4/5 (79 Downloads)

Book Synopsis Toroidal Dehn Fillings on Hyperbolic 3-Manifolds by : Cameron Gordon

Download or read book Toroidal Dehn Fillings on Hyperbolic 3-Manifolds written by Cameron Gordon and published by American Mathematical Soc.. This book was released on 2008 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.


Toroidal Dehn Fillings on Hyperbolic 3-Manifolds Related Books

Toroidal Dehn Fillings on Hyperbolic 3-Manifolds
Language: en
Pages: 154
Authors: Cameron Gordon
Categories: Mathematics
Type: BOOK - Published: 2008 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-ma
Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori
Language: en
Pages: 136
Authors: Steven Boyer
Categories: Mathematics
Type: BOOK - Published: 2024-04-17 - Publisher: American Mathematical Society

DOWNLOAD EBOOK

View the abstract.
Small Divisor Problem in the Theory of Three-Dimensional Water Gravity Waves
Language: en
Pages: 144
Authors: GŽrard Iooss
Categories: Science
Type: BOOK - Published: 2009-06-05 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The authors consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity $g$ and resulting from the n
Symplectic Actions of $2$-Tori on $4$-Manifolds
Language: en
Pages: 96
Authors: Alvaro Pelayo
Categories: Mathematics
Type: BOOK - Published: 2010-02-22 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

In this paper the author classifies symplectic actions of $2$-tori on compact connected symplectic $4$-manifolds, up to equivariant symplectomorphisms. This ext
Spinor Genera in Characteristic 2
Language: en
Pages: 104
Authors: Yuanhua Wang
Categories: Mathematics
Type: BOOK - Published: 2008 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The purpose of this paper is to establish the spinor genus theory of quadratic forms over global function fields in characteristic 2. The first part of the pape